skip to main content


Search for: All records

Creators/Authors contains: "Chen, Wei-Chih"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Abstract

    The mechanism of unconventional superconductivity in correlated materials remains a great challenge in condensed matter physics. The recent discovery of superconductivity in infinite-layer nickelates, as an analog to high-Tccuprates, has opened a new route to tackle this challenge. By growing 8 nm Pr0.8Sr0.2NiO2films on the (LaAlO3)0.3(Sr2AlTaO6)0.7substrate, we successfully raise the superconducting onset transition temperatureTcin the widely studied SrTiO3-substrated nickelates from 9 K into 15 K, which indicates compressive strain is an efficient protocol to further enhance superconductivity in infinite-layer nickelates. Additionally, the x-ray absorption spectroscopy, combined with the first-principles and many-body simulations, suggest a crucial role of the hybridization between Ni and O orbitals in the unconventional pairing. These results also suggest the increase ofTcbe driven by the change of charge-transfer nature that would narrow the origin of general unconventional superconductivity in correlated materials to the covalence of transition metals and ligands.

     
    more » « less
  3. Abstract Motivated by properties-controlling potential of the strain, we investigate strain dependence of structure, electronic, and magnetic properties of Sr 2 IrO 4 using complementary theoretical tools: ab-initio calculations, analytical approaches (rigid octahedra picture, Slater-Koster integrals), and extended $$t-{{{\mathcal{J}}}}$$ t − J model. We find that strain affects both Ir-Ir distance and Ir-O-Ir angle, and the rigid octahedra picture is not relevant. Second, we find fundamentally different behavior for compressive and tensile strain. One remarkable feature is the formation of two subsets of bond- and orbital-dependent carriers, a compass-like model, under compression. This originates from the strain-induced renormalization of the Ir-O-Ir superexchange and O on-site energy. We also show that under compressive (tensile) strain, Fermi surface becomes highly dispersive (relatively flat). Already at a tensile strain of 1.5%, we observe spectral weight redistribution, with the low-energy band acquiring almost purely singlet character. These results can be directly compared with future experiments. 
    more » « less
  4. null (Ed.)
    Abstract The compression behavior of osmium metal was investigated up to 280 GPa (volume compression V/Vo =0.725) under nonhydrostatic conditions at ambient temperature using angle dispersive axial x-ray diffraction (A-XRD) with a diamond anvil cell (DAC). In addition, shear strength of osmium was measured to 170 GPa using radial x-ray diffraction (R-XRD) technique in DAC. Both diffraction techniques in DAC employed platinum as an internal pressure standard. Density functional theory (DFT) calculations were also performed, and the computed lattice parameters and volumes under compression are in good agreement with the experiments. DFT predicts a monotonous increase in axial ratio (c/a) with pressure and the structural anomalies of less than 1 % in (c/a) ratio below 150 GPa were not reproduced in theoretical calculations and hydrostatic measurements. The measured value of shear strength of osmium (τ) approaches a limiting value of 6 GPa above a pressure of 50 GPa in contrast to theoretical predictions of 24 GPa and is likely due to imperfections in polycrystalline samples. DFT calculations also enable the studies of shear and tensile deformations. The theoretical ideal shear stress is found along the (001)[1-10] shear direction with the maximal shear stress ~24 GPa at critical strain ~0.13. 
    more » « less
  5. Abstract

    We build random forests models to predict elastic properties and mechanical hardness of a compound, using only its chemical formula as input. The model training uses over 10,000 target compounds and 60 features based on stoichiometric attributes, elemental properties, orbital occupations, and ionic bonding levels. Using the models, we construct triangular graphs for B-C-N compounds to map out their bulk and shear moduli, as well as hardness values. The graphs indicate that a 1:1 B-N ratio can lead to various superhard compositions. We also validate the machine learning results by evolutionary structure prediction and density functional theory. Our study shows that BC10N, B4C5N3, and B2C3N exhibit dynamically stable phases with hardness values >40 GPa, which are superhard materials that potentially could be synthesized by low-temperature plasma methods.

     
    more » « less
  6. null (Ed.)
    Thermoelastic behavior of transition metal boride Os2B3 was studied under quasi-hydrostatic and isothermal conditions in a Paris-Edinburgh cell to 5.4 GPa and 1273 K. In-situ Energy Dispersive X-ray diffraction was used to determine interplanar spacings of the hexagonal crystal structure and thus the volume and axial compression. P-V-T data were fitted to a 3rd Order Birch-Murnaghan equation of state with a temperature modification to determine thermal elastic constants. The bulk modulus was shown to be K0 = 402 ± 21 GPa when the first pressure derivative was held to K0’ = 4.0 from the room temperature P-V curve. Under a quadratic fit α=α_0+α_1 T-α_2 T^(-2), the thermal expansion coefficients were determined to be α_0=1.862×10^(-5) K-1, α_1=0.841×10^(-9) K-2, and α_2=-0.525 K. Density functional theory (DFT) with the quasi-harmonic approximation (QHA) were further employed to study Os2B3, including its P-V-T curves, phonon spectra, bulk modulus, specific heat, thermal expansion, and the Grüneisen parameter. A good agreement between the first-principle theory and experimental observations was achieved, highlighting the success of the Armiento-Mattsson 2005 generalized gradient approximation functional employed in this study and QHA for describing thermodynamic properties of Os2B3. 
    more » « less
  7. null (Ed.)
    Superhard boron-rich boron carbide coatings were deposited on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) under controlled conditions, which led to either a disordered or crystalline structure, as measured by X-ray diffraction. The control of either disordered or crystalline structures was achieved solely by the choice of the sample being placed either directly on top of the sample holder or within an inset of the sample holder, respectively. The carbon content in the B-C bonded disordered and crystalline coatings was 6.1 at.% and 4.5 at.%, respectively, as measured by X-ray photoelectron spectroscopy. X-ray diffraction analysis of the crystalline coating provided a good match with a B50C2-type structure in which two carbon atoms replaced boron in the α-tetragonal B52 structure, or in which the carbon atoms occupied different interstitial sites. Density functional theory predictions were used to evaluate the dynamical stability of the potential B50C2 structural forms and were consistent with the measurements. The measured nanoindentation hardness of the coatings was as high as 64 GPa, well above the 40 GPa threshold for superhardness. 
    more » « less
  8. High pressure study on ultra-hard transition-metal boride Os2B3 was carried out in a diamond anvil cell under isothermal and non-hydrostatic compression with platinum as an X-ray pressure standard. The ambient-pressure hexagonal phase of Os2B3 is found to be stable with a volume compression V/V0 = 0.670 ± 0.009 at the maximum pressure of 358 ± 7 GPa. Anisotropic compression behavior is observed in Os2B3 to the highest pressure, with the c-axis being the least compressible. The measured equation of state using the 3rd-order Birch-Murnaghan fit reveals a bulk modulus K0= 397 GPa and its first pressure derivative K0'= 4.0. The experimental lattice parameters and bulk modulus at ambient conditions also agree well with our density-functional-theory (DFT) calculations within an error margin of ~1%. DFT results indicate that Os2B3 becomes more ductile under compression, with a strong anisotropy in the axial bulk modulus persisting to the highest pressure. DFT further enables the studies of charge distribution and electronic structure at high pressure. The pressure-enhanced electron density and repulsion along the Os and B bonds result in a high incompressibility along the crystal c-axis. Our work helps to elucidate the fundamental properties of Os2B3 under ultrahigh pressure for potential applications in extreme environments. 
    more » « less